Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis

Kaouthar Dhouib,a Chantal Khan Malek,ab Wilhelm Pfleging,c Bernard Gauthier-Manuel,b Roland Duffait,b Gaël Thuillier,b Rosaria Ferrigno,a Lilian Jacquemet,c Jeremy Ohana,a Jean-Luc Ferrer,c Anne Théobald-Dietrich,a Richard Giegé,a Bernard Lorbera and Claude Sautera,b

Received 3rd November 2008, Accepted 30th January 2009
First published as an Advance Article on the web 2nd March 2009
DOI: 10.1039/b819362b

Microfluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment. The transparency of the materials is compatible with crystal growth monitoring by optical microscopy. The quality of the protein 3D structures derived from on-chip crystal analysis by X-ray diffraction using a synchrotron radiation was used to identify the most appropriate polymers. Altogether the results demonstrate that for a novel biomolecule, all steps from the initial search of crystallization conditions to X-ray diffraction data collection for 3D structure determination can be performed in a single chip.

1. Introduction

X-ray crystallography is a major investigation method in structural biology. In spite of the expanding knowledge of biological crystallogenesis, the production of well-diffractioning crystals is frequently the rate-limiting step in the determination of the three-dimensional structure of a biomolecule.1,2 One reason is that a limited quantity of pure targets (including proteins, nucleic acids, their complexes and viruses) is available. Another one is that usually myriades of assays must be prepared in order to find the crystallant (i.e. a salt, an alcohol, a polymer or a mixture of them) in which the best crystals grow. Screening at large scale has become possible owing to the use of robots that can handle micro- or nano-volumes of solution at high speed, which is a necessity in structural genomics and drug design projects to enhance the success of crystallization experiments.3 Recently a new technological breakthrough happened when microfluidics pushed the limits of miniaturization and parallelization with sample volumes much smaller than those dispensed by robots.4

So far there are two major types of microfluidic devices dedicated to biomolecule crystallization. The first one is a block of poly-dimethylsiloxane (PDMS) composed of several polymer layers prepared by multi-layer soft lithography. It contains a multitude of pneumatically actuated valves which serve to fill small parallelepipedic chambers with nanovolumes of biomolecule and reagent solutions and to control their mixing. Crystalization occurs by free interface diffusion (FID)5 as soon as the latter solutions are brought in contact via a short connecting channel6,7. This type of large scale integrated microfluidic chips has been commercialized since 2003 (Topaz® crystallizer, Fluidigm Corp., CA) and advanced versions provide more control over the crystallization conditions by equilibrating the solutions through a combination of FID and vapour diffusion.7,8 However, the use of these devices is limited by the evaporation due to the permeability of the polymer, the current cost of the chips and the necessity of an external pressure system to activate the experiments.

The second example is a drop-based or digital microfluidic device also made of PDMS. It uses batch crystallization in nanodroplets, or plugs, formed at regular interval inside a microfluidic channel and separated by an immiscible carrier fluid.9–11 Biomolecule, buffer, and crystallant solutions are mixed at the junction of independent microfluidic channels. Composition and volume of the droplets can be varied and the latter are stored off-chip either in glass or in plastic capillary tubes for crystal observation and X-ray analysis.10,12 Using a similar concept, a phase chip was designed to modulate the volume of the drop by water permeation and so to control crystal nucleation and growth kinetics.13

We recently developed a novel microfluidic device to crystallize biomolecules in microchannels by counter-diffusion (CD).
This efficient crystallization method,14 initially implemented in glass capillaries,15,16 is compatible with direct analysis of crystals by X-ray diffraction17 and our first results showed that microfluidics is ideal for setting up such kinds of experiments in parallel screening on minimal samples volumes.18,19 Here we report on the manufacturing techniques used to produce four such chips either in PDMS, in poly-methyl-methacrylate (PMMA) or in cycloolefin-copolymer (COC). We also discuss important practical aspects, such as solution filling, chip handling, crystal growth monitoring and material X-ray scattering background. Crystals of two proteins grown in these chips were analyzed on-chip by X-ray diffraction on a synchrotron source. The derived protein structures contribute to define the characteristics of a chip in which all steps from initial search of crystallization conditions to optimized crystal growth and 3D structure analysis can be performed.

2. Design and manufacture of microfluidic devices

All chips were designed for equilibrating biomolecule and crystallant solutions according to the principle of counter-diffusion. Therefore, the solution containing the biomolecule must be contained in a long chamber with a small diameter (like a capillary tube or a microchannel). The crystallant (i.e. the reagent that will decrease the solubility of the biomolecule and bring it to a supersaturated state) enters this chamber from one side and diffuses gradually across the biomolecule solution. When the concentrations of the compounds are sufficient, the biomolecule becomes supersaturated and may start to crystallize.

The layout of all chips consists of a set of eight parallel microfluidic crystallization channels arranged in a tree-like network on a plane substrate (Fig. 1A). Each channel with a length of 1.5 cm and a 100 \times 100 μm2 section contains a total volume of about \sim150 nl biomolecule solution. Four chips with the same geometry were fabricated in various materials using three manufacturing routes, two methods based on micro-moulding using either replica moulding (casting) or hot-embossing, and an alternative method consisting of a one-step laser-based direct manufacturing.

Casting of PDMS chips

PDMS is an inexpensive, rubber-like elastomer with good optical transparency and biocompatibility. It is also the most commonly used material for fast, easy and low-cost prototyping of micro-fluidic devices in research laboratories. For these reasons, the first prototypes were made of PDMS. Casting was carried out using a two-component rubber temperature vulcanized PDMS (Sylgard 184, Dow Corning) following a standard process based on curing the liquid solution of prepolymer and base (ratio 1/10) on a master.20 The masters were produced in epoxy-based SU8 negative photoresist patterned by photolithography. The initial thickness of the chip of \sim5 mm was subsequently reduced to 1 mm to avoid excessive X-ray absorption. In the first version of the chip, channels were sealed by a layer of PDMS, which was later replaced by two types of thin adhesive films. The first one (ViewSeal\textsuperset{TM}, Greiner BioOne) is a pressure sensitive sealing film made from a polyester/polyolefin laminate coated with a silicone adhesive (130 μm). The second (CrystalClear, Hampton Research) corresponds to Henkel Duck high performance tape (HP260) with a thickness of about 80 μm and an acrylic adhesive. These types of films are widely employed to seal crystallization microplates and were manually applied following manufacturer’s recommendation to seal PDMS, PMMA and COC microstructures.

Direct laser machining of PMMA chips

Some PMMA prototypes were fabricated by excimer laser ablation. Structuring was performed with the laser micromachining system Promaster (Optec s.a., France) which operates with an ATLEX-500-SI at a wavelength of 248 nm and a laser pulse length of 5 ns. It is expected that short laser pulses in the ns range significantly reduce thermal contributions to a laser process. The used short pulse excimer generates a raw “flat-top” beam with an intensity fluctuation better than 5%, which is directly applicable without homogenizing devices for a well-defined laser-assisted structuring of polymers. Micro-channels with a depth of 50 μm and a width of 100 μm were fabricated as illustrated in Fig. 2A. The reservoirs (Fig. 2A, left) have a larger depth (250 μm). At the bottom of the reservoir a periodical structure is detected which is caused by the scanning of the laser beam during patterning. A laser beam with a circular aperture of 100 μm was used for the generation of the micro-channels (Fig. 2A, right). Using the excimer laser it took 13 min to produce a prototype.

CO_2-laser processing was performed with the laser system “Firestar v40” (Synrad Inc., USA) operating in continuous mode at 10.6 μm. The beam intensity distribution is Gaussian with a high beam quality. PMMA was patterned using a laser power in the range of 0.2 to 2 W. The processing speed ranged from 10 to 100 mm s$^{-1}$. The parameters (focus position and line energy,
Mould manufacture for hot embossing using laser microcaving

Laser microcaving was performed using a solid state laser radiation source (Nd:YAG, wavelength 1064 nm) with laser powers of $P_l = 1$–10 W in continuous wave mode. The steel substrate used to produce the mould is locally heated up by laser radiation, leading to a temperature rise above the melting temperature. In combination with oxygen as processing gas laser-induced oxidation of the melt occurs. Under special conditions the mechanical tensions inside the oxide layer reach a critical value, and the oxide layer lifts off from the bulk material. The Gaussian laser beam is focused onto the sample surface by an objective lens and scanned over the sample surface via deflection mirrors at a speed of up to of 2000 mm s$^{-1}$. Large areas of up to 110 \times 110 mm2 can be treated. During one laser scan the generated ablation depth is between 1 and 20 μm. A surface quality with a roughness of $R_s = 100$ nm can be realized. Volume ablation rate is in the range of 10^4–10^6 μm3 s$^{-1}$.

Hot embossing of PMMA and COC biochips

PMMA is an amorphous polymer widely used in microfluidics. COC, a new generation of polyolefin material based on cyclic and linear olefins, has a number of advantages over other thermoplastic polymers like PMMA, such as reduced water absorption (<0.01%), better chemical resistance to aqueous acids and bases and to most polar solvents. COC is also transparent in the visible and near-UV spectrum, biocompatible and becoming popular in the manufacture of opto-fluidic components. PMMA sheets with a T_g of 105 °C were purchased from Goodfellow. Two grades of Topas® COC 5013 and 6013 (from Ticona now Topas Advanced Polymers GmbH) with T_g = 130 °C and 140°C, respectively were purchased as granulates of 1.5 mm diameter. COC 5013 was used for the replication of the chip because its viscosity is lower at high temperature, i.e. its melt flow index is higher (48 at 260 °C under 2.16 kg compared to 14 for COC 6013 measured under the same conditions recommended by the manufacturer). For comparison, the melt flow index of PMMA measured at 230 °C and 3.8 kg load following the norm for PMMA [ISO] was 5.5.21

Hot embossing was carried out using an in-house built heating press.20 The embossing tool and the polymers (either in the sheet or granulate form) were first heated at a temperature $T = T_g + 50$ °C. The tool was then brought into contact with the substrate and embossed with a controlled force, typically on the order of 0.1 kN for a tool with a square surface of 40×40 mm2 during several hundreds of seconds so that the polymeric replica conformed to the shape of the mould (Fig. 2C). The tool-substrate assembly was cooled to a temperature $T = T_g - 50$ °C, while the embossing force was still applied. The demoulding took place below this temperature and the embossed polymer substrate was separated from the mould manually. No release layer was used for facilitating the de-embossing process.

3. Crystallization and crystallography experiments

Materials

Bovine insulin, plant thaumatin, turkey egg-white lysozyme, N-(2-acetamido)-2-iminodiaceic acid (ADA), 2-(N-morpholino)
ethanesulfonic acid (MES) and DL-tartaric acid were purchased from Sigma. Hen egg-white lysozyme was from Seikagaku. Turnip yellow mosaic virus (TYMV) was purified as reported. All other chemicals were of ACS grade and used without further purification. All crystallization solutions were prepared with distilled water and filtered before use. PEG-3350, agarose (gelling temperature 28 °C at 1% m/v), and Crystal Clear adhesive tape were from Hampton Research and N-ocetyl-β-D glucopyranoside (βOG) from Bachem. The critical micellar concentration (CMC) of pure βOG is ~20 mM (0.58% m/v) in water at 22 °C.45

Crystallization assays

Protein or virus stock solutions were filtered over 0.22 μm membranes. Solutions used for crystallization assays contained 0.3–1% w/v βOG. Experiments performed in the presence of 0.5% (m/v) agarose sol were set up as following: a 2% (m/v) agarose stock solution was heated at 90 °C during 5 min and cooled to 35 °C before addition to the protein/detergent solution. The final mixture was kept at 35 °C until it was loaded in the channels. The standard procedure for growing crystals in all chips at 20 °C consisted in three steps. First, the sealed wells were opened. Second, 3 μl macromolecular solution was injected (or deposited) with a Hamilton Microliter syringe in the sample well to fill the entire channel arborescence. Third, 2 μl reagent was introduced in each of the 8 crystallizing agent wells with a micropipette. After each filling step, the wells were sealed without delay to prevent the evaporation of well solution and the displacement of channel solution. Following couples of solutions were used to produce crystals: 17 mg mL⁻¹ insulin and sodium phosphate 0.5 M pH 10.2; 34–47 mg ml⁻¹ thraumat in and 1.5 M sodium tartrate containing 0.1 M ADA pH 6.5; 80–110 mg ml⁻¹ turkey lysozyme and 2–4 M NaCl buffered with 0.1 M sodium acetate pH 4.5; 80 mg ml⁻¹ hen lysozyme and 0.8 M NaCl containing 30% (m/v) PEG-3350 and 0.1 M sodium acetate pH 4.5; and finally 35–80 mg.ml⁻¹ TYMV and 2 M ammonium phosphate with 0.1 M MES pH 3.7.

X-ray analysis

All X-ray analyses were performed at room temperature (T = 20–25 °C) on the automated synchrotron FIP-BM30A beamline18,23 of the European Synchrotron Radiation Facility (ESRF, Grenoble France). Material samples and chips were attached onto a microplate that was hold in the beam by the robotic arm line (ESRF storage ring operating at 50 mA). All analyses were carried out at the selenium edge (wavelength of 0.98 Å), exposure time and angle were adjusted to avoid too many overloaded pixels. Reflections were indexed, processed, and scaled using XDS package25 and structure factors were generated using the program TRUNCATE from CCP4. Structures were solved by molecular replacement and refined with PHENIX.27 Thaumatin and hen lysozyme structures contained in the PDB (accession codes 1THW and 1AZF, respectively) were used as search models.

4. Results and discussion

Counter-diffusion in microfluidic environments

Beside sample volume miniaturization, microfluidic systems present a supplementary advantage for crystal growth: channels and chambers with sections below 100 × 100 μm² provide convection-free environments. This property was instrumental for the design of the aforementioned FID chip. Indeed, the absence of convection is required in FID to ensure a gentle mixing of biomolecule and crystallant solutions. Thus, it will occur by pure diffusion at the liquid–liquid interface created when the two solutions are brought in contact.

More generally, it was demonstrated that crystals of superior quality can be grown when convection is low or negligible, as it is the case under microgravity,28 within hydrogels (like agarose or silica)29 or inside thin capillary tubes. Convection-free environments are also a prerequisite for counter-diffusion. In the absence of convection the crystallant diffuses into the biomolecule solution and generates a concentration gradient inside an elongated crystallization chamber like a cylindrical capillary tube60 (otherwise both solutions mix by convection and reach quickly the equilibrium.) For this reason CD is the most powerful method for searching and optimizing crystallization conditions.

In the case of FID chips, typical lengths for crystallization chambers are 0.1–1 mm and crystallant concentration will equilibrate rapidly. If one considers Einstein’s relation for the mean-square displacement of molecules in solution <r²> = 2Dτ and an average diffusion coefficient for a salt D = 10⁻⁵ cm² s⁻¹, small crystallant molecules will cross a 1 mm chamber in a few minutes and equilibration will be achieved in a few hours. Biomolecules diffuse 1 to 2 orders of magnitude slower than the crystallants (for instance D = 1.2 × 10⁻⁹ and 10⁻⁷ cm² s⁻¹ for lysozyme and a small quasi-spherical plant virus, respectively). In that respect, FID can be seen as a delayed batch experiment in which biomolecule and crystallant solutions mix slowly by diffusion.

In contrast, CD setups require starting conditions far from equilibrium, i.e. high crystallant concentration, and much longer crystallization chambers, measuring typically 4–5 cm. The same small molecule will take about 15 days to cross the chamber and, doing so, it will generates a concentration and a related supersaturation gradient. Each single CD experiment is actually characterized by the propagation of a supersaturation wave of gradually
decreasing amplitude that samples a broad range of nucleation and growth conditions. At the entrance of the chamber a precipitate may form and at the opposite end single crystals may grow. Major experimental prerequisites for such a crystallization experiment, namely a long diffusion path and the absence of convection, are easily met inside a microfluidic channel. Therefore, microfluidic devices are very well adapted for the miniaturization of counter-diffusion experiments as it is illustrated below.

Chip design and production

In the first step of this project, several layouts including alignments of isolated channels and comb- or tree-like arrangements of channels have been compared (not shown). The retained design consisting of parallel channels arranged as a dichotomic tree confers two practical advantages (Fig. 1). Firstly, the macromolecular solution can be loaded manually in a single operation through one inlet (the submicroliter sample volume required per individual experiment would be hardly manageable by hand). Then the solution flows simultaneously in the 8 crystallization chambers with a length of 1.5 cm and a section 100 × 100 μm². Secondly, dead-volume, liquid handling, and sample consumption are minimal. Crystallization chambers are connected with voluminous reservoirs in which the concentrated crystallant solutions are deposited. The volume of a reservoir is typically 10 to 100 times that of the channel to ensure a large excess of crystallant (salt, alcohol or polymer) and create a supersaturation gradient by diffusion. Reservoir solutions can be handled manually or via a liquid dispensing system.

Four chips with the same geometry were fabricated in various materials using three manufacturing routes. Two methods are based on micro-moulding, therefore involve the use of a master or mould with negative features to produce the parts with the desired positive features in a soft elastomer (PDMS) or rigid thermoplastic polymers (PMMA, COC) using respectively replica moulding or hot-embossing in a subsequent replication step. The alternative method involves a one-step laser-based direct manufacturing with neither a mask nor a mould. Advanced laser processing was used in different instances, for generating a metallic mould for hot embossing using micro-caving and for direct patterning of the microfluidic circuit in polymer. The use of lasers for chip manufacture, in particular for microfluidics applications, was the object of recent reviews.

The first chip was made of PDMS by soft lithography which is very suitable for fast prototyping. PDMS prototypes showed that crystals could be grown and analyzed in a chip. Although they served to validate the concept, we abandoned them because of several practical limitations explained below. For this reason, chip prototypes with the same geometry were then produced in PMMA and COC. For instance, a 3 μl droplet of aqueous solution with detergent fills the channels within 20–60 s. Detergents are commonly employed in membrane protein crystallization but they are also useful during the crystallization of cytoplasmic, and presumably water soluble, membrane protein crystallization but they are also useful during the crystallization process (extrusion, injection), the hot-embossing process may be performed at temperatures slightly higher than the glass transition temperature of the polymer. It is generally used to manufacture prototypes or small series, whereas the micro-injection process is more adapted to produce micro-components in large batches, i.e. mass production. The mould used for this microreplication technique was produced by laser-assisted micro-patterning. The main challenge is to obtain defect free and smooth surfaces during laser processing. Laser-micro-carving which can be described as laser-induced oxidation was used to produce the mould in stainless steel V4A. The patterning of metallic surface enables a “clean” patterning process with only a small amount of debris and melt. No release layer was used for facilitating the de-embossing process. The microstructures from the master were fully transferred to the polymer replica with a good fidelity. Fig. 2C shows pictures of details of the hot-embossed biochips in PMMA and COC substrates.

Material constrains in biocrystallization applications

The materials used to manufacture our chips must meet some requirements to facilitate sample loading in the microchannels, crystal growth monitoring and be suitable for on-chip crystal analysis. First all polymers employed here are essentially hydrophobic. A priori this is a hindrance for the filling of aqueous solutions in channels by capillarity. We have found that the addition of a small amount of detergent (e.g. 0.3–1% w/v of βOG) greatly accelerates the introduction of biomolecule solutions inside PDMS, PMMA and COC. For instance, a 3 μl droplet of aqueous solution with detergent fills the channels within 20–60 s. Detergents are commonly employed in membrane protein crystallization but they are also useful during the crystallization of cytoplasmic, and presumably water soluble, biomolecules to increase their conformational stability and to facilitate the preparation of concentrated samples.

Once the sample is inside the channels, the crystallant solution is deposited in the well located at the other end of each channel and CD starts immediately. Several biomolecules including bovine insulin (6 kDa), turkey egg white lysozyme (14 kDa), the sweet protein thaumatin (22 kDa), and a spherical plant virus (TYMV, 9 MDa) were successfully introduced in the various chips and crystallized in the presence of their respective crystallant (Fig. 1B to E). The distribution pattern of the crystals along the channel is characteristic of CD. As can be seen in Fig. 1B, a precipitate and very small crystals forms on the side of the entry of the crystallant (on the left of the picture) where supersaturation is maximal. The thaumatin crystals are bigger near the opposite end of the channel where supersaturation is...
lower. In some cases thaumatin and lysozyme crystals filled completely the channel.

Material transparency in visible light is another necessary condition to observe and monitor crystal growth. PDMS, PMMA and COC are colourless and show no birefringence in polarized light (Fig. 1). The rigidity and air-tightness of PMMA and COC are advantages over the flexibility and permeability of PDMS. They provide a better control over crystallization conditions and improve the stability of crystals since the latter contain on average 35 to 80% solvent, are fragile and very sensitive to dehydration.

Sample dehydration and mechanical stress, as well as solution movements and crystal destruction during handling are avoided.

We noticed that sample loading varies with the quality of the surface of the channels. Indeed, the quality of chips produced by laser ablation was more heterogeneous than that of chips prepared by hot embossing. The channels in the former chips did not fill simultaneously due to manufacturing defects like surface roughness, depth variation at channel connections, or material residues. Microfissures in the materials increased the fragility of chips produced by laser ablation, the bubble formation upon sample loading and sample dehydration. The properties of chips made by hot-embossing in PMMA and COC were the most satisfactory in terms of batch homogeneity and easiness of use for crystallization setup. Clean embossed channels also favor the growth of large mono crystals (see Fig. 5B) whereas rough relieves and material debris trigger heterogeneous nucleation and the growth of small crystals in channels produced by laser ablation.

Towards on-chip X-ray crystal analysis: When matter matters

On-chip crystal analysis was the ultimate goal of this project. Our first diffraction tests with the PDMS chip indicated that a 5 mm thick layer totally absorbs the incident X-ray beam. When the thickness of the polymer was reduced to ~1 mm and channels were...
sealed with a thin adhesive film (Fig. 3), the background scattering was much lower (Fig. 4) and diffraction patterns of a thaumatin crystal contained in a chip could be collected at room temperature. The limit of diffraction was modest (2.8 Å) because the material absorbs a great part of the direct beam and background scattering masks most of the weak reflections. Thus, in our opinion a chip made solely of PDMS is clearly not the best choice to collect high resolution diffraction data from biomolecule crystals. In spite of being very useful for fast prototyping, PDMS is too flexible at low thickness, generates parallax defects at high thickness and, for these reasons, makes an accurate alignment of the crystals in the X-ray beam difficult. Further, its permeability causes sample dehydration and its chemical composition is responsible for a strong absorption and scattering of X-rays.

This prompted us to undertake a systematic comparison of the X-ray absorption and scattering properties of PDMS and of those of various light and rigid polymers, like PMMA, different types of COC, polypropylene or SU8 photoresist. Indeed, PMMA, polycarbonate or polyimide have recently been shown to be interesting alternatives. Sheets of these materials with a thickness in conformity with the requirements of chip production (i.e. a thickness of 250 μm for rigid polymers and of 1 mm for PDMS) were placed in the incident beam of a synchrotron source (Fig. 4). The scattering backgrounds were measured at two wavelengths: 0.98 Å (corresponding to the selenium absorption edge used for structure phasing using the anomalous signal of selenomethionine-derivatized proteins) and 1.54 Å (produced by the copper anode of laboratory X-ray sources). The very low to null scattering signal measured with PDMS at both wavelengths clearly demonstrates that the high silicium content is not suitable for biomolecule crystals analysis by X-ray diffraction (Fig. 4). In contrast, all polymers containing only light atoms (C, O, N, H) exhibit scattering backgrounds that are comparable in intensity to that of air and this even at the highest wavelength. Polypropylene is the only material which shows discrete ring-like patterns characteristic of a micro-crystalline structure. In summary, the four polymers interfere much less with X-rays than PDMS and they are thus more compatible with the on-chip crystal characterization.

On the basis of these results, we selected PMMA and COC to manufacture new prototypes (Fig. 5). The better mechanical properties of these materials allow to reduce chip thickness by a factor 4 (i.e. down to 250 μm while a 1 mm layer of PDMS is very flexible and difficult to manipulate) while maintaining a good rigidity. As a consequence, the quality of the crystallographic data collected from crystals contained inside the chip was much improved (Table 1). Data collected on thaumatin crystals of the same age and size inside PDMS and PMMA chips can be directly compared. The lower diffraction limit (i.e. 2.8 Å with regard to 2 Å) and higher Rmerge values (i.e. lower agreement

Table 1 On-chip crystal analysis in different chip versions

<table>
<thead>
<tr>
<th>Chip version /crystal</th>
<th>PDMS</th>
<th>PMMA#1</th>
<th>PMMA#2</th>
<th>PMMA#3</th>
<th>COC#1</th>
<th>COC#2</th>
<th>COC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Thaumatin</td>
<td>Thaumatin</td>
<td>Thaumatin</td>
<td>Thaumatin</td>
<td>Thaumatin</td>
<td>Thaumatin</td>
<td>Lysozyme</td>
</tr>
<tr>
<td>Nb of images</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>180</td>
<td>100</td>
</tr>
<tr>
<td>Distance (mm)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Oscillation (s, degree)</td>
<td>2; 180</td>
<td>1; 30</td>
<td>1; 30</td>
<td>1; 20</td>
<td>0.5; 20</td>
<td>0.5; 30</td>
<td>1; 30</td>
</tr>
<tr>
<td>Space group</td>
<td>P4422</td>
<td>P4422</td>
<td>P4422</td>
<td>P4422</td>
<td>P4422</td>
<td>P4422</td>
<td>P4422</td>
</tr>
<tr>
<td>Cell parameters a, c (Å)</td>
<td>58.3 151.6</td>
<td>58.4 151.6</td>
<td>58.4 151.5</td>
<td>58.5 151.7</td>
<td>58.6 151.4</td>
<td>58.6 151.4</td>
<td>79.1 37.9</td>
</tr>
<tr>
<td>Mosaicity (degree)</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>20–2.8</td>
<td>20–1.85</td>
<td>20–2.0</td>
<td>20–1.9</td>
<td>20–1.65</td>
<td>20–1.7</td>
<td>20–1.5</td>
</tr>
<tr>
<td>High resolution shell (Å)</td>
<td>2.97–2.85</td>
<td>1.96–1.85</td>
<td>2.12–2.0</td>
<td>2.01–1.9</td>
<td>1.75–1.65</td>
<td>1.8–1.7</td>
<td>1.6–1.5</td>
</tr>
<tr>
<td>No. observations</td>
<td>19494</td>
<td>63426</td>
<td>55386</td>
<td>61743</td>
<td>132297</td>
<td>136359</td>
<td>83112</td>
</tr>
<tr>
<td>No. unique reflections</td>
<td>5883</td>
<td>22357</td>
<td>17315</td>
<td>20044</td>
<td>29862</td>
<td>29562</td>
<td>18739</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>84.2 (87.3)</td>
<td>95.9 (86.5)</td>
<td>93.2 (94.3)</td>
<td>92.7 (89.0)</td>
<td>91.4 (88.5)</td>
<td>98 (97.2)</td>
<td>94.4 (83.7)</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>12.9 (22.6)</td>
<td>5.7 (15.1)</td>
<td>1.16 (47.6)</td>
<td>10.4 (34.9)</td>
<td>10.2 (45.7)</td>
<td>10.7 (43.9)</td>
<td>6.6 (41)</td>
</tr>
<tr>
<td>I(0I)</td>
<td>90.0 (5.3)</td>
<td>13 (4.9)</td>
<td>8.0 (2.5)</td>
<td>8.7 (2.7)</td>
<td>8.9 (2.2)</td>
<td>9.6 (2.8)</td>
<td>13.4 (2.74)</td>
</tr>
<tr>
<td>Wilson plot B factor (Å²)</td>
<td>22</td>
<td>23</td>
<td>27</td>
<td>24</td>
<td>27</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Final R_free and R_work</td>
<td>0.29; 0.22</td>
<td>0.22; 0.18</td>
<td>0.24; 0.19</td>
<td>0.24; 0.20</td>
<td>0.25; 0.19</td>
<td>0.24; 0.19</td>
<td>0.16; 0.18</td>
</tr>
<tr>
<td>No. of water molecules</td>
<td>—</td>
<td>117</td>
<td>90</td>
<td>125</td>
<td>129</td>
<td>121</td>
<td>77</td>
</tr>
</tbody>
</table>
between measurements of equivalent reflections) of the crystals inside PDMS are due to the stronger absorption of the incident and diffracted X-ray beam by this material. In contrast, crystals grown in PMMA chips (Fig. 6B) diffract X-rays beyond to 2 Å resolution, show better Rmerge statistics, even though the exposure times were 3 times shorter (30 s degree$^{-1}$ instead of 90 s degree$^{-1}$). All thaumatin crystals display the same unit cell parameters, excellent crystal mosaicity values (<0.1°), as illustrated by the very sharp diffraction spots in the inset of Fig. 5D, and comparable B-factors (22–27 Å2), indicating low molecular agitation in the crystal packing. This also stands for crystals of lysozyme and thaumatin grown in the presence of agarose gel in COC chips. In other words, the quality of all crystals is similar and differences in diffraction data are essentially due to the nature of chip material, PMMA and COC offering better thickness /absorption /rigidity compromise than PDMS. The quality of thaumatin crystals grown in COC chips cannot be directly compared to that observed in PMMA chips since the analysis was not carried out at the same time and in the same experimental conditions. In addition, the presence of agarose in the former might affect (improve) crystal diffraction properties.

Finally, our diffraction analyses demonstrate that preliminary crystal characterization, if not complete dataset measurements, can be carried out at room temperature in situ. The derived electron density maps (EDM) illustrate the quality of structural information that can be achieved (Fig. 6): data collected in PMMA and COC chips led to more detailed EDMs, and thus to improved 3D models, as indicated by better refinement statistics (lower R-factors) and an increased number of observable water molecules in the protein solvation shell.

5. Conclusion

We have demonstrated that the design we have chosen is suitable to produce simple and inexpensive microfluidic chips dedicated to the preparation of biomolecule crystals by CD. Our very first chips made of PDMS had the disadvantage to be too flexible for handling, insufficiently airtight to prevent dehydration during crystallization and not enough transparent to X-rays. Better performances were obtained with chips made of the thin and rigid polymers PMMA or COC that are transparent in visible light and X-rays. With these lab-on-a-chip prototypes, all steps of a structural genomics study from macromolecule to determination of its 3D structure could be performed.

Since on-chip crystal characterization is feasible, hazardous handling of crystals, i.e. the transfer in capillaries or nylon loops, is no longer necessary and best crystals can rapidly be identified at room temperature. In this way, each crystal will reveal its real diffraction potential. If cryo-cooling is required for the collection of full datasets, crystals can be extracted from the channels of the current set-up by removing the sealing film. However, room temperature data collection, which was the rule before the generalization of cryo-cooling, brings supplementary insights into biomolecule structure and dynamics in more realistic conditions. Presently, radiation damage occurring in a synchrotron beam is a major issue, but the situation may change in near future with the development of a new generation of detectors, for instance PILATUS detectors with ms readout times, that enable continuous and much faster diffraction data collection. The use of X-ray compatible chips and fast acquisition protocols that maximize data collection before severe crystal decay takes place will certainly contribute to the renaissance of crystallographic analyses at room temperature and provide valuable alternatives for samples that cannot be vitrified. In the present study, we have exploited a high crystal symmetry to reach near-to-complete data from single crystals despite some experimental constrains (sweep angle of the robotic arm <40°), but one can anticipate that the current developments on synchrotron facilities in automated sample handling, selection and analysis will soon provide convenient solutions for collecting and merging partial data from several low-symmetry crystals.

Finally, as mentioned above, crystals obtained in convection-free systems display better diffraction properties than those produced by conventional methods. Recently, an independent study using CD in microfluidic channels has confirmed this tendency. Anyhow, CD chips open new opportunities for the fast, efficient and cost-effective growth of high quality crystals in miniaturized systems. Of course the application range of these chips is not at all restricted to biomolecules; it can easily be extended to small inorganic and organic compounds.
Acknowledgements

The authors thank the team of beamline FIP-BM30A at ESRF (Grenoble, France) for assistance during material and on-chip crystal characterization, as well as the MIMENTO technology platform at FEMTO-Innovation, the Centre National de la Recherche Scientifique (CNRS) for support in the frame of the Programme Interdisciplinaire de Recherche (PIR) ‘Microfluidique et Microsystèmes Fluidiques’, of the PNANO Programme from the Agence Nationale pour la Recherche (ANR) and the European Union (EU) Network of Excellence ‘Multi-Material Micro Manufacture: Technologies and Applications (4M)’ (FP6-500274-1). K.D. benefited from a joined BDI doctoral grant from CNRS and Région Alsace, G.T. from a grant in the framework of the EU thematic network ‘NetMED: Virtual Institute on Micromechatronics for biomedical industry’ (G7RT-CT-2002-05113) and C.S. was recipient of a Marie Curie European Reintegration Grant (MERG-CT-2004-004898).

References

22 R. E. Matthews, Properties of nucleoprotein fractions isolated from turnip yellow mosaic virus preparations, Virology, 1960, 12, 521–539.

